WORKSHEETS FOR PUPILS

Name of activity	$\begin{gathered} \text { Estimated } \\ \text { time } \\ \text { needed } \end{gathered}$	Difficulty of activity	Age of children for whom the activity is suitable	Tools and used materials	Objective of activity
Comet	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	encyclopaedia, atlas or internet, calculator, spreadsheet	concept of comet, tail, movement around the sun
Minor Planet Velocity	$\begin{aligned} & 30-40 \\ & \text { minutes } \end{aligned}$	very hard	14-15	encyclopaedia, atlas or internet, calculator, spreadsheet	3. Kepler's law, unit conversions
Energy	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	paper, computer, calculator	law of conservation of mechanical energy, kinetic and positional energy
Impact Craters	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	metre ruler, calculator, spreadsheet, graph paper	work with map, kinetic energy, volume, weight, density
Gravitational Force	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	calculator, spreadsheet, graph paper	gravitational force, sphere volume, unit conversions

Worksheet 2: MINOR PLANET VELOCITY

Practical Exercise: The minor planet X is located at a distance of 2.5 au from the Sun. Assume a circular orbital trajectory. What is its orbital period in seconds?

Practical Exercise: Estimate the velocity of a minor planet on an orbiting trajectory around the Sun, assuming that the trajectory of the minor planet around the Sun is circular.

Practical Exercise: How would the orbital velocity of the minor planet change if it were at a distance of the planet Jupiter?

