WORKSHEETS FOR PUPILS

Name of activity	$\begin{gathered} \text { Estimated } \\ \text { time } \\ \text { needed } \end{gathered}$	Difficulty of activity	Age of children for whom the activity is suitable	Tools and used materials	Objective of activity
Comet	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	encyclopaedia, atlas or internet, calculator, spreadsheet	concept of comet, tail, movement around the sun
Minor Planet Velocity	$\begin{aligned} & 30-40 \\ & \text { minutes } \end{aligned}$	very hard	14-15	encyclopaedia, atlas or internet, calculator, spreadsheet	3. Kepler's law, unit conversions
Energy	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	paper, computer, calculator	law of conservation of mechanical energy, kinetic and positional energy
Impact Craters	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	metre ruler, calculator, spreadsheet, graph paper	work with map, kinetic energy, volume, weight, density
Gravitational Force	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	medium	14-15	calculator, spreadsheet, graph paper	gravitational force, sphere volume, unit conversions

Worksheet 3: ENERGY

Practical Exercise: The ten-kilogram weight is at rest at a height of 10 km above the Earth's surface. Calculate the positional energy according to the equation $E_{p}=m h g$, where $g=10 \mathrm{~N} \cdot \mathrm{~kg}^{-1}$, $h=5 \mathrm{~km}$. How much energy is converted from positional energy to kinetic energy if the body is moved from 10 km to 5 km ? Estimate what maximum speed the weight can reach if we do not take air resistance into account.

Practical Exercise: Let's look at the energy that is released when a moving object suddenly stops - e.g. a comet or minor planet hits the Earth. The usual velocities of minor planets hitting the Earth range from $20 \mathrm{~km} \cdot \mathrm{~s}-1$ to $70 \mathrm{~km} \cdot \mathrm{~s}^{-1}$.
Imagine a kilogram object that hits the Earth at speed $20 \mathrm{~km} \cdot \mathrm{~s}^{-1}$. Calculate how much energy is released during this collision.

Practical Exercise: Now, imagine the same object, only hitting the Earth at a speed of $70 \mathrm{~km} \cdot \mathrm{~s}^{-1}$. Calculate how much energy is released during this collision. Compare with the previous value.

Practical Exercise: We will look at the effect of the size of the incident object on the released energy. Calculate the released energy of a two-kilogram object that collides with the Earth at speed $20 \mathrm{~km} \cdot \mathrm{~s}^{-1}$. Compare with the answer in the first case.

