WORKSHEETS FOR PUPILS

Name of	Estimated	Difficulty	Age of	Tools and used	Objective of
activity	time needed	of activity	children for whom the activity is suitable	materials	activity
Comet	20 – 30 minutes	medium	14 – 15	encyclopaedia, atlas or internet, calculator, spreadsheet	concept of comet, tail, movement around the sun
Minor Planet Velocity	30 – 40 minutes	very hard	14 – 15	encyclopaedia, atlas or internet, calculator, spreadsheet	3. Kepler's law, unit conversions
Energy	20 – 30 minutes	medium	14 – 15	paper, computer, calculator	law of conservation of mechanical energy, kinetic and positional energy
Impact Craters	20 – 30 minutes	medium	14 – 15	metre ruler, calculator, spreadsheet, graph paper	work with map, kinetic energy, volume, weight, density
Gravitational Force	20 – 30 minutes	medium	14 – 15	calculator, spreadsheet, graph paper	gravitational force, sphere volume, unit conversions

Worksheet 4: IMPACT CRATERS

Practical Exercise: This activity is focused on measuring the dimensions of real impact craters on the Earth's surface using Mapy.cz or Google Maps. Craters vary in size, from small (hundreds of metres) to very large (over 100 km). The impacts created by these craters have caused various climate changes; small impact affected only the local area, while larger impacts could have had changes of a global nature.

For each crater, find its location on the map, measure the dimensions and area of the impact crater, and determine the state in whose territory the impact crater is located. The location of the crater is given by latitude and longitude.
Practical Exercise: Calculation of Kinetic Energy of Impact The Chicxulub Crater was formed by the impact of a rocky body (density = 2,700 kg m ⁻³) with a diameter of 17.5 km. Calculate the volume of the body. Assume that the body is round.
Practical Exercise: Calculate the mass of the body that formed the Chicxulub Crater.
Practical Exercise: Calculate how much kinetic energy was released on impact if the body was moving at a speed of 20 km s ⁻¹ .

Name of Impact Crater	Latitude	Longitude	Size (km)	Area	State
				(km ²)	
Barringer's Crater	35°02' N	111°01' W			
This crater was formed					
50,000 years ago by the					
impact of an iron					
meteorite.					
Manicouagan	51°23' N	68°42' W			
One of the largest					
preserved impact craters,					
it was formed more than					
200 million years ago.					
Clearwater Lakes	56°13' N	74°30' W			
These two impact craters					
were created by the impact					
of a pair of minor planets					
on the Earth's surface.					
Chicxulub Crater	21°24' N	89°31' W			
This impact crater is					
difficult to find. It was					
formed 66 million years					
ago by the impact of a					
meteorite of 10 km. The					
impact has released a lot					
of energy, climate change					
and the extinction of many					
species ocurred.					
Upheaval Dome	38°26' N	109°54' W			
This crater has all					

the features of a typical				
impact crater – central				
peak, inner crater and				
outer				
concentric impact rings.				
Gosses Bluff	23°50' S	132°19' E		
This impact crater was				
formed more than 140				
million years ago by the				
impact of a 1 km minor				
planet. The central circle				
is not the edge of the				
crater, it lies much further.				
Tenoumer	22°55' N	10°24' W		
There are two more				
around the crater, which				
are easy to find, the first is				
166 km in azimuth 27°,				
the second 376 km in				
azimuth 219°. The crater				
was formed 20,000 years				
ago.				
Vredefort	27°00' S	27°30' E		
A crater composed of				
several rings. Age 2				
billion years. Meteorite				
with a size of 10 km.				