PRACTICAL EXERCISES FOR PUPILS

Name of the	Supposed time	Difficulty	Suitabilit	Tools and	Objective
activity	demandingnes	of the	y for the	necessary	of the
	S	activity	age group	materials	activity
Distances and sizes in the Universe	20 – 30 minutes	Simple to medium difficult	13 – 15	encyclopaedia, star charts or internet/compute r software such as Stellarium/Star chart, calculator	Reminding of typical distances and sizes of spatial objects, simple calculation of various distances
Balloon model of expansion of Universe	20 – 30 minutes	Medium difficult	14 – 15	Rubber balloon, felt-pen (or self- adhesive decoration stars), paper/tape measure, calculator	Modelling of expansion of Universe and determinatio n of the distances within
Model of Orion constellatio n	1 – 2 hours	More time demanding , depending on the precision of the realisation	13 – 15	Bamboo stick, paper, glue or adhesive tape, tape measure, coloured paper or crayons/felt- pens, glue, polystyrene board, internet or computer software such as	Creation of three- dimensional constellation model, stars within ate not in the same distance from us

	Stellarium/Star	
	chart	

Practical Exercise 2: BALLOON MODEL OF EXPANDING UNIVERSE

Objective of Practical Exercise: create a model illustrating the expansion of the Universe **Tools:**

- Rubber inflatable balloon,
- Felt-pen (or self-adhesive decoration stars),
- paper/tape measure,
- calculator.

It is not evident at first sight that the Universe should be expanding. The size of a classroom or a school does not change and neither do the distances between the places on Earth. But is does apply to big distances – distances in the Universe (at least some of them) do increase. In the 20-ties of the previous century, the American astronomer Edwin Hubble discovered that almost all galaxies recess from our Milky Way. However, it does not mean that our Galaxy should be a centre of the Universe.

Model representing the expansion of the Universe by means of an inflatable balloon. Source: <u>https://astronomy.stackexchange.com/questions/17965/is-the-universe-moving-through-infinite-space-time-as-it-expands</u>

Instructions:

- 1. Work in pairs or triplets.
- 2. Blow the balloon up to a diameter of cca 10 cm. Hold the end tight with your hand so that the air will not escape, do not tie it up.

- 3. Use the felt-pen to make six marks on the balloon, one of them name G (for our Galaxy), the other mark by numbers 1 5 (denoting other galaxies in the remote and young Universe). Be careful not to do the marks in one line!
- 4. By means of a paper or tape measure gauge the distances d_1 from G "galaxy" to other marks 1-5 and write them in a table as a Measurement 1. Be careful not to let the air from the balloon escape. Use the tape measure to determine the circumference of the balloon in its widest part.

- 5. Blow the balloon up again until it doubles it size (i.e. up to 20 cm in diameter).
- 6. Measure the distances d_2 of G, galaxy" to the marks 1 5 and the circumference of the balloon in its widest part and write it in the table as Measurement 2.
- 7. Once again, the last time, blow up the balloon until it is 30 cm wide.
- 8. Measure the distances d_3 of G, galaxy" to the marks 1 5 and the circumference of the balloon in its widest part and write it in the table as Measurement 3.
- 9. Calculate the differences $d_2 d_1$ and $d_3 d_2$ for each of the marks 1 5 in the last columns of the table.

Distance from the G"galaxy"/cm	Measurement 1 <i>d</i> 1/cm	Measurement 2 d2/cm	Measurement 3 <i>d</i> 3/cm	Difference (d2 — d1)/cm	Difference (d3 — d2)/cm
Mark 1					
Mark 2					
Mark 3					
Mark 4					
Mark 5					
Circumference of the balloon/cm				Х	Х

Measurement:

Final questions:

1. How did the distance from the G "galaxy" to the remaining marks 1 - 5 change after each blowing up of the balloon?

2. Which marks did recess more - the ones that in the beginning were closer or further away from the G?

3. Let us say that the blowing up of the balloon takes always the same time t (e.g. 10 s). From the differences $d_2 - d_1$ and $d_3 - d_2$ it is possible to calculate the "speeds" of recess $v_1 = (d_2 - d_1)/t$ and $v_2 = (d_3 - d_2)/t$ (our speeds are small, but for the galaxies in the Universe we get them in km/s!).

	Speed	Speed
	$v_1 = (d_2 - d_1)/t$ in cm/s	$v_2 = (d_3 - d_2)/t$ in cm/s
Mark 1		
Mark 2		
Mark 3		
Mark 4		
Mark 5		

Do the speeds depend on the distance d1? If it is the case, how?