Practical exercise 2: HOW BIG ARE THE STARS?
Aim
During this exercise the students will have an idea about the sizes of stars and will understand the relation between mass and radius of stars.
Necessary materials
• the table with data,
• calculator.
Instructions for the teacher
This exercise will give opportunity of the students by using data for specific stars to understand how different are stars according their sizes, masses, radii, density and how these parameters are connected between each other. You can create some preliminary idea by using this picture illustrating the size differences in star:
Star | Radius (Solar radii) |
Density |
Mass |
|
Supergiants | Antares | 776 | 0,00000004 | 20 |
Beta Lirae | 19,2 | 0,0014 | 9,7 | |
Betelgeuse | 1 000 | 0,0000005 | 10 | |
Deneb | 96 | 0,00002 | 20 | |
Gamma Cygni |
67 | 0,00007 | 20 | |
Rigel | 78 | 0,00004 | 20 | |
Giants | Aldebaran | |||
Arcturus | 35 | 0,00018 | 8 | |
Beta Pegasi | 40 | 0,00014 | 9 | |
Capella | 13 | 0,00096 | 2,1 | |
Main sequence stars |
Our Sun | 1,0 | 1,0 | 1,0 |
Altair | 1,6 | 0,415 | 1,7 | |
Barnard’s star | 0,15 | 53,3 | 0,18 | |
61 А Cygni | 0,7 | 1,69 | 0,58 | |
Hadar | 22 | 0,0023 | 25 | |
Kruger 60 | 0,35 | 6,30 | 0,27 | |
MU-1 Scorpii | 5,2 | 0,1000 | 14 | |
Procyon A | 2,6 | 0,102 | 1,8 | |
Sirius A | 1,9 | 0,335 | 2,3 | |
White dwarfs | 40 B Eridani | 0,018 | 71,000 | 0,41 |
Sirius B | 0,022 | 90,000 | 0,99 | |
Van Maanen star | 0,007 | 47,000 | 0,14 |
Detailed instructions for the students
Arrange the stars from the list according their radius starting from the smallest to the largest one.
Answer
1. Van Maanen star | 12. Capella |
2. 40 B Eridani | 13. Beta Lyrae |
3. Sirius B | 14. Hadar |
4. Barnard’s star | 15. Arcturus |
5. Kruger 60 | 16. Beta Pegasi |
6. 61 A Cygni | 17. Gamma Cygni |
7. Our Sun | 18. Rigel |
8. Altair | 19. Aldebaran |
9. Sirius A | 20. Deneb |
10. Procyon A | 21. Antares |
11. MU-1 Scorpii | 22. Betelgeuse |
Next to every star in your list above write the ratio stellar radius to stellar mass (in relative units to solar units rounding the result to the second decimal place.
Answer
1. Van Maanen star | 0,05 | 12. Capella | 6,19 |
2. 40 B Eridani | 0,04 | 13. Beta Lyrae | 1,98 |
3. Sirius B | 0,02 | 14. Hadar | 0,88 |
4. Barnadr’s stars | 0,83 | 15. Arcturus | 4,38 |
5. Kruger 60 | 1,30 | 16. Beta Pegasi | 0,44 |
6. 61 A Cygni | 1,21 | 17. Gamma Cygni | 3,35 |
7. Our sun | 1,0 | 18. Rigel | 3,9 |
8. Altair | 0,94 | 19. Aldebaran | 21,75 |
9. Sirius A | 0,83 | 20. Deneb | 4,8 |
10. Procyon A | 1,44 | 21. Antares | 38,8 |
11. MU-1 Scorpii | 0,37 | 22. Betelgeuse | 100 |
Explain the relation between radius and mass according the type of the star – supergiants, giants, Main sequence stars, white dwarfs.
[Answer: As a whole the white dwarfs have the smallest radii, then the Main sequence stars coming. The giants have larger radii and supergiants have the largest radii. Surprisingly this arrangement is not valid if it is seen the radius/mass ratio. The reason is that the density also plays a role. |For example the white dwarfs have the smallest radius and a modest mass amongst the stars but they have also the highest density while the supergiants have a huge radius but much lower density.]