menu 5 Solar System
Erasmus+: Key action 2:Strategic Partnerships in School Education

Practical Exercise 1: RADIANS OR DEGREES?

a) Convert degrees to radians:

1°, 1°, 5°, 1°, 5°, 30°, 1°, 5°, 30°, 60°, 1°, 5°, 30°, 60°, 180°, 2701°, 5°, 30°, 60°, 180°, 270°.

b) Convert radians to degrees: 2,91,91  ∙  10−4 rad, ,91  ∙  10−4 rad,  rad, 1 rad, ,91  ∙  10−4 rad,  rad, 1 rad,  rad, 91  ∙  10−4 rad,  rad, 1 rad,  rad,  rad, 91 ∙ 10−4 rad,  rad, 1 rad,  rad,  rad,  rad.

c) For the following angle values in degrees:

c1) covert them from degree to radians,

c2) calculate the tangent of the given angle θ, i. e. calculate tgθ, and compare with the values from the point c1). Given angles: 0,1", 0,1", 30', 20,1", 30', 2°, 0,1", 30', 2°, 5°, 0,1", 30', 2°, 5°, 10°, 0,1", 30', 2°, 5°, 10°, 15°, 0,1", 30', 2°, 5°, 10°, 15°, 30°.

Answer:

ahe conversion relationship between radians and degrees can be derived for example from cross-multiplication:

a)

b)

c1)

c2)

We can see that from the value 5° the relationship 5° the relationship tgθ 5° the relationship tgθ ≐θ is less an less exact.