- Practical Exercise 1 RADIANS OR DEGREES?
- Practical Exercise 2 MARS IN OPPOSITION AND QUADRATURE
- Practical Exercise 3 MEASURING MERCURY AND VENUS
- Practical Exercise 4 “MERCUAN”
- Practical Exercise 5 THE EARTH FROM MARS
- Practical Exercise 6 HOW BIG IS THE MOON?
- Practical Exercise 7 THE MOON AGAIN
- Practical Exercise 8 PARAMETERS OF PLANET TRAJECTORIES
- Practical Exercise 9 LIKE FROM ANOTHER PLANET...
- Practical Exercise 10 FEET FIRMLY ON THE EARTH...
- Practical Exercise 11 GREEK, HOW BIG IS THE EARTH?
- Practical Exercise 12 THE MOON IN ACTION FOR THE THIRD TIME
Practical Exercise 1: RADIANS OR DEGREES?
a) Convert degrees to radians:
1°, 1°, 5°, 1°, 5°, 30°, 1°, 5°, 30°, 60°, 1°, 5°, 30°, 60°, 180°, 2701°, 5°, 30°, 60°, 180°, 270°.
b) Convert radians to degrees: 2,91,91 ∙ 10−4 rad, ,91 ∙ 10−4 rad, rad, 1 rad, ,91 ∙ 10−4 rad, rad, 1 rad, rad, 91 ∙ 10−4 rad, rad, 1 rad, rad, rad, 91 ∙ 10−4 rad, rad, 1 rad, rad, rad, rad.
c) For the following angle values in degrees:
c1) covert them from degree to radians,
c2) calculate the tangent of the given angle θ, i. e. calculate tgθ, and compare with the values from the point c1). Given angles: 0,1", 0,1", 30', 20,1", 30', 2°, 0,1", 30', 2°, 5°, 0,1", 30', 2°, 5°, 10°, 0,1", 30', 2°, 5°, 10°, 15°, 0,1", 30', 2°, 5°, 10°, 15°, 30°.
Answer:
ahe conversion relationship between radians and degrees can be derived for example from cross-multiplication:
a)
b)
c1)
c2)
We can see that from the value 5° the relationship 5° the relationship tgθ 5° the relationship tgθ ≐θ is less an less exact.